Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Virol ; 95(2): e28484, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173238

ABSTRACT

The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , SARS-CoV-2 , Macaca mulatta , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
2.
EClinicalMedicine ; 38: 101020, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1313060

ABSTRACT

BACKGROUND: ZyCoV-D is a DNA vaccine candidate, which comprises a plasmid DNA carrying spike-S gene of SARS-CoV-2 virus along with gene coding for signal peptide. The spike(S) region includes the receptor-binding domain (RBD), which binds to the human angiotensin converting Enzyme (ACE)-2 receptor and mediates the entry of virus inside the cell. METHODS: We conducted a single-center, open-label, non-randomized, Phase 1 trial in India between July 2020 and October 2020. Healthy adults aged between 18 and 55 years were sequentially enrolled and allocated to one of four treatment arms in a dose escalation manner. Three doses of vaccine were administered 28 days apart and each subject was followed up for 28 days post third dose to evaluate safety and immunogenicity. FINDINGS: Out of 126 individuals screened for eligibility. Forty-eight subjects (mean age 34·9 years) were enrolled and vaccinated in the Phase 1 study Overall, 12/48 (25%) subjects reported at least one AE (i.e. combined solicited and unsolicited) during the study. There were no deaths or serious adverse events reported in Phase 1 of the study. The proportion of subjects who seroconverted based on IgG titers on day 84 was 4/11 (36·36%), 4/12 (33·33%), 10/10 (100·00%) and 8/10 (80·00%) in the treatment Arm 1 (1 mg: Needle), Arm 2 (1 mg: NFIS), Arm 3 (2 mg: Needle) and Arm 4 (2 mg: NFIS), respectively. INTERPRETATION: ZyCoV-D vaccine is found to be safe, well-tolerated and immunogenic in the Phase 1 trial. Our findings suggest that the DNA vaccine warrants further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL